Kuartilatas dan bawah juga dapat memberikan informasi yang lebih rinci mengenai sebaran data, lokasi titik data tertentu, adanya pencilan dalam data, dan perbedaan sebaran antara 50% tengah data dan titik data luar dibandingkan dengan hanya mengandalkan nilai minimum dan maksimum.
Kuartilbawah (Q 1) adalah nilai yang menjadi batas dari data terurut yang paling rendah sampai 1 / 4 bagian data terurut pertama. Kuartil tengah (Q 2) adalah nilai yang membagi banyak data menjadi dua bagian yang sama banyak. Nilai dari kuartil tengah (Q 2) disebut juga dengan median yaitu nilai yang terletak antara dua bagian dari data terurut.
Padaartikel kali ini admin akan share informasi mengenai Kuartil Atas Data Berat Badan Siswa Adalah - Sumber Berbagi Data, informasi ini disatukan berasal dari beragam sumber menjadi mohon maaf jikalau informasinya kurang lengkap atau tidak cukup tepat. Postingan kali ini juga membahas mengenai Rumus Kuartil - Pengertian, Cara Menentukan Dan Contoh Soal, Cara Menentukan Read More Β»
Kuartilbawah atau Q1 merupakan salah satu materi yang dibahas dalam ilmu Matematika. Biasanya, kuartil bawah dihitung bersamaan dengan unsur kuartil lain, yakni kuartil tengah (Q2) dan kuartil atas (Q3). ADVERTISEMENT Kuartil sendiri adalah jenis kuantil yang membagi data menjadi empat bagian dengan jumlah yang kurang lebih sama.
Jawabanpaling sesuai dengan pertanyaan Kuartil bawah (Q1), kuartil tengah (Q2), dan kurtil atas (Q3) dari data 5,3,2,7,8,6,5,1,5,
2p1QE. Hai Quipperian, saat melakukan percobaan dengan melibatkan banyak data, pasti kamu membutuhkan peran statistika. Misalnya, untuk menentukan rata-rata, nilai tengah, dan besaran-besaran lain. Keseluruhan data yang kamu peroleh bisa dibagi ke dalam beberapa bagian dengan porsi atau persentase yang sama. Jika kamu ingin membagi datamu ke dalam empat kelompok sama banyak, maka kamu harus tentukan dahulu kuartilnya. Lalu, apa yang dimaksud kuartil? Untuk tahu penjelasannya, yuk simak artikel berikut ini. Pengertian Kuartil Kuartil merupakan suatu istilah kuantitatif yang bisa membagi suatu data menjadi empat bagian sama banyak. Setiap bagian memiliki persentase yang sama, yaitu 25%. Sebelum menentukan kuartil, semua data harus diurutkan terlebih dahulu dari yang paling kecil. Jika tidak diurutkan, hasil yang diperoleh tidak akan akurat. Adapun ilustrasi kuartil adalah sebagai berikut. Untuk membag suatu data menjadi empat bagian sama banyak, dibutuhkan tiga kuartil, yaitu kuartil 1 Q1, kuartil 2 Q2, dan kuartil 3 Q3. Coba kamu perhatikan Q2! Oleh karena Q2 membagi data menjadi dua bagian sama banyak, dengan persentase tiap bagian 50%, maka Q2 disebut juga sebagai median. Cara Menentukan Kuartil Cara menentukan nilai kuartil suatu data itu bergantung pada jenis datanya, misalnya data tunggal atau data berkelompok. Mengingat, cara menentukan kuartil keduanya juga berbeda. Lalu, bagaimana cara menentukan kuartil data tunggal dan data berkelompok? Yuk, simak berikut ini. Kuartil Data Tunggal Data tunggal adalah data yang tidak disusun dalam bentuk interval. Nah, kuartil data tunggal bisa ditentukan dengan rumus berikut. Letak Qi = Dengan Qi = kuartil ke-i; i = 1, 2, 3 bergantung letak kuartil yang dicari; dan n = banyaknya data. Untuk memudahkanmu dalam mengerjakan kuartil data tunggal ini, perhatikan rumus SUPER βSolusi Quipperβ berikut. Kuartil 1 Kuartil Atas Kuartil 2 Kuartil Tengah Kuartil 3 Kuartil Bawah Kuartil Data Berkelompok Data berkelompok adalah data yang disusun dalam bentuk interval. Lalu, bagaimana cara menentukan letak kuartilnya? Ikuti langkah berikut ini, ya. Tentukan dahulu letak kuartilnya menggunakan rumus berikut. Letak Qi = Dengan Qi = kuartil ke-i i = letak desil ke-I; dan n = banyaknya data. Mengapa letak kuartil perlu dicari terlebih dahulu? Karena kamu sulit untuk bisa memastikan posisi kuartil ke-i pada kumpulan data yang jumlahnya cukup banyak. Jika datanya hanya ada 4 atau 5, maka letak kuartil bisa dengan mudah diketahui. Setelah tahu letak kuartilnya, tentukan nilai kuartil yang dimaksud menggunakan rumus berikut. Dengan Qi = kuartil ke-i; Tbi = tepi bawah kelas kuartil ke-i; p = interval kelas; fk = frekuensi kumulatif sebelum kuartil ke-i; f = frekuensi kuartil ke-i; n = banyaknya data; dan i = posisi kuartil yang dicari 1 β 3. Jangkauan Kuartil Jangkauan antarkuartil adalah selisih antara kuartil bawah dan kuartil atas. Secara matematis, dirumuskan sebagai berikut. Dengan JQ = jangkauan antarkuartil; Q3 = kuartil bawah kuartil 3; dan Q1 = kuartil atas kuartil 1. Simpangan Kuartil Simpangan kuartil biasa disebut deviasi kuartil merupakan besaran yang menunjukkan tingkat variabilitas suatu data. Secara matematis, simpangan kuartil dirumuskan sebagai berikut. Dengan QD = simpangan kuartil; Q3 = kuartil bawah kuartil 3; dan Q1 = kuartil atas kuartil 1. Contoh Soal Untuk mengasah kemampuanmu, yuk simak contoh soal berikut ini. Contoh Soal 1 Tentukan kuartil ke-1 dari data-data berikut. 3, 2, 2, 4, 4, 1, 1, 3, 4, 2, 2, 5, 7, 6, 8 Pembahasan Mula-mula, kamu harus mengurutkan data seperti berikut. 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 6, 7, 8 Banyaknya data n = 15 Selanjutnya, gunakan rumus letak kuartil, dengan i = 1. Dengan demikian, kuartil 1 terletak pada data urutan ke-4, yaitu 2. Jadi, kuartil atasnya adalah 2. Contoh Soal 2 Berikut ini merupakan tabel penjualan buah di Toko A dan Toko B pada 6 bulan pertama. BulanToko A kgToko B kgBulan ke-12025Bulan ke-23230Bulan ke-33432Bulan ke-44041Bulan ke-55658Bulan ke-66062 Tentukan perbandingan jangkauan antarkuartil penjualan buah Toko A dan Toko B! Pembahasan Pertama, kamu harus menentukan jangkauan antarkuartil masing-masing toko. Jangkauan antarkuartil Toko A Untuk menentukan jangkauan antarkuartil Toko A, carilah nilai kuartil atas dan bawahnya terlebih dahulu. Letak kuartil atas Nilai kuartil atas Q1 = 20 + 0,7532 β 20 = 29 Letak kuartil bawah Nilai kuartil bawah Q3 = 56 + 0,2560 β 56 = 57 Jangkauan antarkuartil Toko A JQ = Q3 β Q1 = 57 β 29 = 28 Jangkauan antarkuartil Toko B Untuk menentukan jangkauan antarkuartil Toko B, carilah nilai kuartil atas dan bawahnya terlebih dahulu. Letak kuartil atas Nilai kuartil atas Q1 = 25 + 0,7530 β 25 = 28,75 Letak kuartil bawah Nilai kuartil bawah Q3 = 58 + 0,2562 β 58 = 59 Jangkauan antarkuartil Toko B JQ = Q3 β Q1 = 59 β 28,75 = 30,25 Dengan demikian, perbandingan jangkauan antarkuartil Toko A dan Toko B adalah sebagai berikut. Jadi, perbandingannya adalah 112 121. Contoh Soal 3 Diketahui tabel data kelompok perolehan skor olimpiade seperti berikut. Tinggi badanFrekuensi f 140 β 1434144 β 147 3148 β 1515152 β 155 2Jumlah 14 Tentukan kuartil bawah dari data pada tabel tersebut! Pembahasan Untuk memudahkanmu, tentukan dahulu frekuensi kumulatif pada tabel. Tinggi badan cmFrekuensi f Frekuensi kumulatif fk140 β 14344144 β 147 37148 β 151512152 β 155 214Jumlah 14 Dari tabel di atas, diperoleh panjang kelas p = 4. Selanjutnya, tentukan letak interval kuartil ke-3 dengan rumus berikut. Letak Qi = Oleh karena frekuensi kumulatif 148 β 151 = 12, maka letak kuartil bawahnya kuartil 3 berada di interval tersebut. Dengan demikian letak Q3 berada di interval 148 β 151. Selanjutnya, tentukan tepi bawah kuartil ke-3. Tb3 = 148 β 0,5 = 147,5 Setelah semua elemen diketahui, gunakan persamaan kuartil ke-i data berkelompok seperti berikut. Jadi, nilai kuartil bawah perolehan skor olimpiade tersebut adalah 148,2 cm. Itulah pembahasan Quipper Blog kali ini. Semoga bisa bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper!
Menyajikan informasi terkini, terbaru dan terupdate mulai dari politik, bisnis, selebriti, lifestyle dan masih banyak Januari 2021 1240waktu baca 2 menitTulisan dari Berita Hari Ini tidak mewakili pandangan dari redaksi kumparanIlustrasi matematika foto UnsplashKuartil bawah atau Q1 merupakaBaca juga n salah satu materi yang dibahas dalam ilmu Matematika. Biasanya, kuartil bawah dihitung bersamaan dengan unsur kuartil lain, yakni kuartil tengah Q2 dan kuartil atas Q3.Kuartil sendiri adalah jenis kuantil yang membagi data menjadi empat bagian dengan jumlah yang kurang lebih sama. Sedangkan, kuartil bawah atau Q1 merupakan nilai tengah antara nilai terkecil dan median suatu kelompok data. Data dapat dibagi menjadi dua jenis, yaitu nilai data tunggal dan data berkelompok. Untuk menentukan kuartil bawah dari kedua data tersebut, diperlukan cara atau rumus yang berbeda. Nah, berikut contoh soal untuk menentukan kuartil bawah pada data tunggal dan Menentukan Kuartil Bawah untuk Data TunggalUntuk menentukan kuartil bawah, data dapat diurutkan terlebih dahulu. Kemudian, data di bawah median atau kuartil tengah Q2 bisa dibagi menjadi dua bagian sama banyak. Berikut contohnya40 15 25 30 10 55 35 45 50 20 6010 15 20 25 30 35 40 45 50 55 60 sudah sesuai urutanQ2 atau kuartal median= 35Q3 atau kuartal bawah= 5015 20 25 30 35 40 45 50 55 Cara Menentukan Kuartil Bawah untuk Data BerkelompokTentukan kuartal bawah dari data berikut ini
- Kuartil Q adalah suatu nilai yang membagi data menjadi empat bagian sama besar. Dikutip dari Buku Target Nilai Rapor 10 Kupas Habis Semua Pelajaran Kelas IX SMP/MTs 2011 oleh Tim Guru Indonesia, kuartil terdiri atas tiga macam, yaitu Kuartil bawah Q1 Kuartil tengah/median Q2 Kuartil atas Q3 ilustrasi kuartil Baca juga Rumus Jangkauan, Kuartil, Simpangan Rata-rata, Variansi, dan Deviasi Standar pada Ukuran Penyebaran Data Berkelompok Cara menentukan kuartil Berikut tata cara menentukan kuartil Urutkan data dari yang terkecil sampai dengan yang terbesar. Tentukan nilai Q2, caranya sama dengan menentukan nilai median. Tentukan Q1 dengan cara membagi data di bawah Q2 menjadi dua bagian sama besar. Tentukan Q3 dengan cara membagi data di atas Q2 menjadi dua bagian sama besar. Jangkauan interkuartil Jangkauan interkuartil hamparan adalah selisih antara kuartil atas dengan kuartil bawah. Simpangan kuartil Simpangan kuartil jangkauan semi interkuartil adalah setengah kali selisih kuartil atas dengan kuartil bawah. Baca juga Rumus Kuartil Data Tunggal Genap dan Data KelompokContoh soal Nilai ulangan Rini 6,7,7,8,7,9,5,6,8. Tentukan kuartil bawah, kuartil tengah, dan kuartil atas! Jawab Pertama, kita urutkan datanya terlebih dulu dari nilai paling rendah ke yang paling besar. Data diurutkan menjadi Data setelah diurutkan Sebab, data tersebut merupakan data ganjil, maka mediannya terletak di tengah, yaitu 7. Baca juga Pengertian dan Rumus Mean, Median, Modus Pada Data Berkelompok Dapatkan update berita pilihan dan breaking news setiap hari dari Mari bergabung di Grup Telegram " News Update", caranya klik link kemudian join. Anda harus install aplikasi Telegram terlebih dulu di ponsel.
Pada bab kali ini, kita akan membahas materi pelajaran tentang pengertian, rumus kuartil dan cara menentukan kuartil serta contoh soal dan pembahasannya lengkap. Kuartil adalah suatu rumus yang membagi suatu data menjadi kepada empat yang sama banyak. Kemudian dari setiap data yang terbagi sama banyak tersebut dibatasi oleh sebuah nilai. Seperti Pada kuartil, misalakan empat data yang dibagi menjadi sama banyak, akan dibatasi oleh 3 tiga nilai kuartil yaitu kuartil atas, kuartil tengah, dan kuartil bawah. Untuk lebih lengkap, yuk langsung saja kita bahas materinya berikut ini Rumus Kuartil Pengetian Kuartil Kuartil ialah suatu nilai β nilai yang membagi data yang telah diurutkan ke dalam empat bagian yang nilainya sama besar. Dalam menentukan letak kuartil data tunggal, kita harus melihat kondisi jumlah data n terlebih dahulu begitu juga sama halnya dengan cara menentukan kuartil data kelompok. Kuartil pada suatu data dapat didapatkan dengan cara membagi data tersebut secara terurut kedalam empat bagian yang memiliki nilai sama besar. Kuartil itu sendiri terdiri atas tiga macam, yaitu diantaranya Kuartil bawah Q1 Kuartil tengah / median Q2 Kuartil atas Q3 Dan apabila suatu data dilambangkan dengan garis lurus, letak kuartil bawah, kuartil tengah dan kuartil atas ialah sebagai berikut Berdasarkan gambar diatas, bawah dapat kita ketahui letak β letak kuartilnya, yaitu pada kuartil bawah Q1, kuartil tengah Q2 dan kuartil atas Q3 Rumus Kuartil Untuk Nilai Data Tunggal Berdasarkan pengertian kuartil diatas, maka dapat kita ketahui bahwa kuartil adalah membagi data menjadi empat bagian sama banyak. Oleh kaena itu, terdapat tiga nilai kuartil yang membagi data tersebut. Sebelum melakukan pembagian data, pastikan bahwa data tersebut sebelumnya sudah kita urutkan terlebih dahulu. Untuk lebih jelasnya dapat dilihat ilustrasi dibawah berikut Dalam mencari nilai kuartil untuk data tunggal, Rumus dibedakan menjadi dua kasus, yaitu untuk jumah data ganjil dan jumlah data genap. Untuk n ganjil, yaitu Sedangkan cara untuk mencari n genap, yaitu Langkah β langkah mencari tiga nilai kuartil data tunggal untuk jumlah data genap ialah sebagai berikut Carilah nilai yang menjadi nilai tengahnya median atau . Membagi data di sebelah kiri median menjadi dua bagian yang sama dan menghasilkan kuartil bawah atau . Membagi data di sebelah kanan median menjadi dua bagian yang sama dan menghasilkan kuartil atas atau . Contoh Soal Perhatikanlah tabel data nilai matematika yang diperoleh sekelompok siswa dibawah berikut Pembahasan Langkah pertama Urutkan data dan carilah nilai mediannya. Kemudian data yang telah diurutkan dan nilai median dapat dilihat pada gambar di bawah berikut Selanjutnya, carilah nilai kuartil bawahnya , maka diperoleh dari nilai tengah dari data terurut di sebelah kiri median, yaitu Maka, nilai kuartil bawahnya ialah 59 Rumus Kuartil Untuk Data Kelompok Untuk mencari nilai kuartil untuk data kelompok, maka dapat di cari dengan menggunakan rumus sebagai berikut Qi = Tbi + i/4n β Fi/fic Keterangaannya Tbi adalah Tepi bawah kuartil ke-i Fi adalah Jumlah frekuensi sebelum frekuensi kuartil ke-i fi adalah Frekuensi kuartil ke-i. i = 1, 2, 3 n adalah Jumlah seluruh frekuensi C adalah Panjang interval kelas Contoh Soal Perhatikan tabel di bawah berikut ini Tentukan kuartil atas pada tabel tersebut adalah Pembahasannya Kuartil atas ialah disimbolkan Jumlah data yaitu Letak kuartil atas berada di bagian data. Sehingga, letak kuartil atas tersebut berada di data ke-30. Maka caranya adalah sebagai berikut Selanjutnya, perhatikanlah tabel yang sudah dilengkapi dengan frekuensi komulatif kurang dari fkk dan letak kuartil atas, yaitu Sehingga, nilai kuartis atasnya ialah Demikianlah pemabahasan mengenai Rumus Kuartil, baik dari segi pengertian, rumus dan contoh soalnya. Semoga dapat memberikan manfaat β¦ Baca Juga Perbedaan Sel Hewan Dan Sel Tumbuhan Lengkap Aturan Cosinus Pada Trigonometri Segitiga Lengkap dan Contoh Soal
Pada kesempatan kali ini kita akan membahas tentang materi Kuartil mulai dari Pengertian, Jenis-jenis, RumusDan Contohnya. Langsung aja baca penjabarannya di bawah IsiPengertianJenis-Jenis KuartilRumus Kuartil Data TunggalKuartil untuk jumlah data ganjilKuartil untuk jumlah data genapRumus Kuartil Data KelompokPelajari Materi TerkaitKuartil adalah nilai-nilai yang membagi data yang telah diurutkan kedalam empat bagian yang sama menentukan letak kuartil data tunggal, anda harus melihat kondisi jumlah data n terlebih merupakan suatu bilangan yang dapat dianggap membagi data yang telah diurutkan menurut besarnya, dari yang terkecil ke yang terbesar menjadi empat sub kelompok sama kuartil Disebut juga dengan simpangan kuartil atau rentang semi pada suatu data dapat didapatkan dengan cara membagi data tersebut secara terurut menjadi empat bagian yang memiliki nilai sama KuartilKuartil terbagi menjadi 3 bagian yakni sebagai berikut ini kuartil bawah Q1kuartil tengah/median Q2kuartil atas Q3Jika suatu data dilambangkan dengan garis lurus, letak kuartil bawah, kuartil tengah, dan kuartil atasnya ialah sebagai berikut 8, 4, 3, 6, 2, 9Data setelah diurutkan 2, 3, 4, 6, 6, 8, 9Letak kuartil Q1 Q2Median Q3 2346689Dari tabel diatas dapat diketahui bahwa letak kuartil bawah Q1, kuartil tengah Q2, dan kuartil atas Q3 pada suatu Kuartil Data TunggalKuartil untuk jumlah data ganjilUntuk jumlah data ganjil, kuartil dapat dicari dengan rumus berikutKuartil untuk jumlah data genapSedangkan untuk jumlah data ganjil, kuartil dapat dicari dengan rumus berikutUrutkan data dari yang terkecil hingga dengan data yang Q2 atau Q1 dengan cara membagi data di bawah Q2 menjadi dua bagian yang sama Q3 dengan cara membagi data di atas Q2 menjadi dua bagian sama Kuartil Data KelompokAda tiga kuartil pada data kelompok, yakni kuartil bawah, kuartil tengah, dan kuartil kuartil data kelompok diberikan seperti persamaan di bawah i = 1 untuk kuartil bawahi = 2 untuk kuartil tengahi = 3 untuk kuartil atasTb adalah tepi bawah kelas kuartiln adalah jumlah seluruh frekuensifk adalah jumlah frekuensi sebelum kelas kuartilfi adalah frekuensi kelas kuartilp adalah panjang kelas intervalPelajari Materi TerkaitMean, Median, dan Modus Data KelompokSimpangan BakuStatistik DeskriptifTabel Z Tabel Distribusi NormalRumus Terbilang Excel 2007, 2010, 2016
kuartil bawah dan kuartil atas